UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

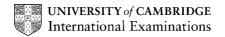
Grade thresholds for Syllabus 0620 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:			
	mark available	А	С	E	F
Component 3	80	58	30	16	11

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

June 2005


IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE – JUNE 2005	0620	3

1	(a)	(i) darker or actual colours chlorine yellow, yellow/green bromine orange, brown, brownish red iodine black grey, purple					
		(ii) gas, liquid, solid all three needed					
		(iii)	colourless or (pale) yellow gas	[1] [1]			
	(b)	Must have a correct reagent otherwise wc = 0					
		l chlorine water or bubble in chlorine gas ow or orange or brown k brown or grey crystals	[1] [1]				
			cept colour that is darker than for bromide)	[1]			
		off yell	add (acidified) silver nitrate(aq) white or pale yellow or cream <u>precipitate</u> or soluble in aqueous ammonia ow <u>precipitate</u> insoluble in aqueous ammonia cipitate essential then either colour or solubility in aqueous ammonia	[1] [1] [1]			
		OR add lead nitrate(aq) pale yellow or off white or cream <u>precipitate</u> yellow <u>precipitate</u> insoluble in aqueous ammonia					
			cept any test that could work – electrolysis, iron(III) salt mine, potassium dichromate, potassium manganate(VII) etc.				
	(c)		$3Cl_2 = 2ICl_3$ having either reactants or products correct ONLY [1]	[2]			
	(d)		orine ND lower M _r or lower density or lighter molecules or molecules move faster	[1] [2]			
		OR	lighter or based on A _r MAX [1] smaller with no additional comment or sieve idea [0] N.B. a total of [3] not [2]				
			TOTAL =	12			
2	(a)		+ I ₂ = Zn ²⁺ + 2I ⁻ having either reactants or products correct ONLY [1]	[2]			
	(b)		zinc and sodium hydroxide white precipitate solves in excess (only if precipitate mentioned)	[1] [1]			
		Mai	zinc and ammonia same results rk either first (sodium hydroxide or aqueous ammonia), if completely correct, then litional [1] can be awarded for stating that the other has the same results.	[1] an			

Paper

Syllabus

			IGCSE – JUNE 2005	0620	3
	(c)	(i)	zinc <u>and</u> a reason Do not mark conseq to iodine in excess		[1]
		(ii)	final mass of zinc bigger or the level section higher or legradient less steep or longer time or falls more slowly	ess zinc used	up [1]
		(iii)	steeper gradient same loss of mass of zinc		[1] [1]
					TOTAL = 10
3	(a)	(i)	CH_3 - CH == CH_2		[1]
		(ii)	conseq to (i) correct repeat unit COND evidence of continuation		[1] [1]
		(iii)	monomer COND because it has a double bond or unsaturated or NOT addition	alkene	[1] [1]
	(b)	(i)	to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate	Э	[1]
		(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased		[1]
		(iii)	silver chloride		[1]
	(c)	(i)	name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. C ₁₇ H ₃₅ of Mark for formula only - [1]	etc.	[1] [1]
		(ii)	alcohol or alkanol NOT a named alcohol		[1]
	(d)	(i)	acid loses a proton base accepts a proton		[2] [1]
			OR same explanation but acid loses a hydrogen ion (and base gains hydrogen ion (1)	(1)	
		(ii)	only partially ionised or poor hydrogen ion donor or poor NOT does not form many hydrogen ions in water or low ions NOT pH	•	

Mark Scheme

Page 2

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – JUNE 2005	0620	3

4	(a)	(i)	correct word equation (carbon dioxide and water) Accept correct symbol equation	[1]
		(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add barium ions COND white precipitate NOT lead(II) compounds	[1] [1]
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less	[1]
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]	[2]
		(ii)	unpleasant smell or it is poisonous or when burnt forms acid rain or forms suldioxide or forms sulphuric acid NOT it is a pollutant	lphur [1]
		(iii)	2H to 1S COND 8e around sulphur atom 2e per hydrogen atom THREE correct TWO from above [1] lonic structure = [0]	[2]
	(c)	(i)	vanadium oxide ${f or}$ vanadium(V) oxide ${f or}$ vanadium pentoxide or V_2O_5 Must be correct oxidation state if one given	[1]
		(ii)	400 to 500° C	[1]
		(iii)	add to (concentrated) sulphuric acid NOT dilute COND (upon sulphuric acid) above then add water	[1] [1]
	(d)	mol mol	ass of one mole of $CaSO_4 = 136$ les of $CaSO_4$ in 79.1g = 0.58 accept 0.6 les of H_2O in 20.9 g = 1.16 accept 1.2 aseq x = 2 x given as an integer	[1] [1] [1]
			TOTAL	= 16
5	(a)	(i)	A is glutamic acid B is alanine	[1] [1]
		(ii)	because acids are colourless or to make them visible or to show positions of the samples or distance travelled	[1]
		(iii)	compare with known acids or reference samples or standards Accept from colours of samples	[1]
		(iv)	amide linkage COND different monomers continuation Accept hydrocarbon part of chain as boxes If nylon 6 then only one monomer [1] NOT different monomers	[1] [1] [1]

Syllabus

Paper

			IGCSE – JUNE 2005		0620	3
	(b)	corr	ect structure as syllabus (box representation ect linkageO tinuation)		[1] [1]
	(c)	(i)	$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$ not balanced [1] Accept C_2H_6O			[2]
		(ii)	gives out <u>energy</u> or equivalent NOT heat N.B. a total of [1] not [2]			[1]
		(iii)	glucose used up or yeast 'killed' by ethanol NOT yeast used up NOT r	eactant use	ed up	[1]
		(iv)	oxidise alcohol to acid or to ethanoic acid or to carbon dioxide and water or if oxygen present aerobic respiration or cannot have anaerobic respiration in presence it is anaerobic respiration, must be add	•	•	[1]
		(v)	fractional distillation			[1]
						TOTAL = 15
6	(a)	(i)	bauxite			[1]
		(ii)	to reduce melting point or improve conductivor as a solvent or reduce the working temper			[1]
		(iii)	carbon dioxide or monoxide or fluorine			[1]
	(b)	(i)	aluminium			[1]
		(ii)	solution goes colourless or copper formed or a <u>brown solid</u> forms or blue colour disapp or bubbles NOT goes clear or copper formed	pears		[1]
		(iii)	covered with an oxide layer			[1]
	(c)	reac	ction no reaction reaction	า		[1] [1]
	(d)	(i)	$2Al(OH)_3 = Al_2O_3 + 3H_2O$ Not balanced [1]			[2]
		(ii)	Aluminium nitrate = aluminium oxide + nitronly TWO correct products [1]	ogen dioxid	e + oxygen	[2]
						TOTAL = 12

Mark Scheme

Page 4

6